如何應(yīng)用人工智能來檢測社交媒體上的異常情況
人工智能和機(jī)器學(xué)習(xí)算法是異常檢測系統(tǒng)的核心,因為它們負(fù)責(zé)分析社交媒體上的異常帖子。根據(jù)您的目標(biāo),您可以讓人工智能處理各種類型的內(nèi)容、評估帳戶的可信度、分析特定類型的異常情況等。
我們來看看 AI 對不同類型內(nèi)容進(jìn)行異常檢測的能力:
(資料圖片)
文本分析。除了 TikTok 和 YouTube 等以視頻為中心的平臺外,流行社交媒體渠道上的大多數(shù)帖子都是基于文本的。使用人工智能分析它們可以為您提供比簡單的關(guān)鍵字搜索更多的信息。人工智能可以確定作者的情緒、解釋隱喻、破譯網(wǎng)絡(luò)俚語和編碼信息。它甚至可以理解幽默并檢測虛假陳述。這些人工智能功能可幫助異常檢測軟件標(biāo)記異常并進(jìn)行徹底分析。圖像分析。基于人工智能的圖像分析有助于識別圖像內(nèi)容:文本、對象和整體上下文。從圖像中讀取文本可以處理帶有文本疊加的帖子,這在 Facebook 等平臺上很流行。圖像處理算法從圖像中挑選出文本后,文本分析算法可以像處理普通文本記錄一樣處理它。
當(dāng)涉及到圖片、屏幕截圖和其他圖像時,您可以使用各種圖像處理算法來識別對象、分割和分類圖像、搜索模式等。您還可以使用 AI 修復(fù)圖像失真,以改善分析結(jié)果。
視頻分析。仔細(xì)分析后,社交媒體上發(fā)布的視頻可能是安全相關(guān)信息的重要來源。人工智能算法可以檢測物體、動作、人,甚至識別情緒,并對不同的視頻進(jìn)行分類。他們可以幫助偵查暴力、尋找失蹤人員,并在大型活動中提供安全概覽。
請注意,與構(gòu)建用于分析文本和圖像的解決方案相比,構(gòu)建用于視頻分析的 AI 解決方案是一項更具挑戰(zhàn)性但可以實現(xiàn)的任務(wù)。它需要收集不同的數(shù)據(jù)庫,進(jìn)行廣泛的算法訓(xùn)練,并使用大量的硬件能力來處理視頻。
現(xiàn)在讓我們看一下對于社交網(wǎng)絡(luò)異常檢測有用的人工智能算法的任務(wù)。請記住,解決方案的 SaaS 部分可以執(zhí)行所有非智能任務(wù),例如網(wǎng)絡(luò)爬行和存儲數(shù)據(jù)。
上下文感知文本翻譯。對于國際組織來說,發(fā)現(xiàn)世界各地社交媒體上的異常帖子非常重要。此任務(wù)需要異常檢測軟件中的翻譯模塊。使用非人工智能翻譯器會降低軟件的效率,因為此類翻譯器不擅長處理上下文、隱喻和引用、語法錯誤和拼寫錯誤。相反,您可以添加 DeepL Python 庫中的 API 、OpenAI 中的 ChatGPT 、Google Cloud 中的 Translation AI 或任何其他翻譯服務(wù)。選擇一項時,請考慮您的軟件使用的技術(shù)、開發(fā)團(tuán)隊的專業(yè)知識、人工智能服務(wù)的功能以及翻譯成本。
威脅概率估計。并非社交媒體上所有不尋常的帖子都必須被標(biāo)記為可疑。例如,網(wǎng)上的激烈爭論可能不會產(chǎn)生任何結(jié)果,或者會導(dǎo)致現(xiàn)實世界的騷擾。人工智能可以估計威脅真實存在的概率。為此,算法可以評估作者是人類還是機(jī)器人,分析作者之前的帖子,并確定可疑帖子的情緒。
威脅評估的結(jié)果將幫助審查社交媒體異常的專家做出決策,并對異常情況做出更快的反應(yīng),從而證明響應(yīng)的合理性。對于此任務(wù),您可以使用現(xiàn)成的 AI 模型進(jìn)行時間序列分析和自然語言處理。您還可以利用 spaCY、NLTK、scikit-learn 和 Gensim 等 Python 庫。
風(fēng)險分類和評分。除了評估威脅之外,人工智能和機(jī)器學(xué)習(xí)算法還可以評估已發(fā)現(xiàn)異常的重要性或嚴(yán)重性,并為其分配風(fēng)險評分。風(fēng)險評分可幫助使用異常檢測系統(tǒng)的專家盡早、快速地解釋結(jié)果并做出響應(yīng)。
由于風(fēng)險評估是 AI 和 ML 的常見用例,因此有許多適用于各種任務(wù)、行業(yè)和特定案例的風(fēng)險分類 AI 算法 [ PDF ] 。您可以找到一種或多或少適合您的項目的算法,而不是從頭開始開發(fā)算法。但是,請記住,您需要使用數(shù)據(jù)集訓(xùn)練此算法,并根據(jù)您的特定任務(wù)進(jìn)行調(diào)整。
盡管功能強(qiáng)大,人工智能驅(qū)動的異常檢測仍然嚴(yán)重依賴與該系統(tǒng)合作的專家。人工智能只能準(zhǔn)備有關(guān)異常的信息供人類審查,從而節(jié)省專家的時間和精力。但它無法對威脅概率做出最終決定并選擇處理異常的最佳方法。
異常檢測解決方案的效率還很大程度上取決于其實施的好壞。讓我們看看您在進(jìn)行異常檢測時可能面臨的主要挑戰(zhàn)以及如何克服這些挑戰(zhàn)。
構(gòu)建基于 SaaS 的異常檢測解決方案面臨哪些挑戰(zhàn)?
提供如此復(fù)雜的解決方案需要云應(yīng)用程序開發(fā)、人工智能開發(fā)甚至合規(guī)法方面的專業(yè)知識。以下是您的團(tuán)隊在開發(fā)社交媒體異常檢測 SaaS 解決方案時可能遇到的主要挑戰(zhàn):
用于人工智能訓(xùn)練的數(shù)據(jù)集。任何人工智能算法都需要在相關(guān)數(shù)據(jù)集上進(jìn)行訓(xùn)練,然后才能應(yīng)用于現(xiàn)實場景。準(zhǔn)備用于異常檢測的數(shù)據(jù)集包含幾個挑戰(zhàn)。異常檢測算法必須依賴于準(zhǔn)確、一致、有效和平衡的數(shù)據(jù)來進(jìn)行有效的異常檢測。必須根據(jù)算法應(yīng)檢測的異常類型來標(biāo)記數(shù)據(jù)。數(shù)據(jù)集還必須定義什么構(gòu)成正常數(shù)據(jù)和異常數(shù)據(jù)。找到適合特定用途的現(xiàn)成數(shù)據(jù)集幾乎是不可能的,這就是開發(fā)團(tuán)隊經(jīng)常手動創(chuàng)建數(shù)據(jù)集的原因。此過程可能非常耗時,并且需要開發(fā)和領(lǐng)域?qū)I(yè)知識。另外,請記住,您的解決方案在發(fā)布后可能需要額外的培訓(xùn),以提高其結(jié)果的準(zhǔn)確性或教它檢測新威脅。
API 限制。在異常檢測解決方案中包含第三方組件及其 API 是減少開發(fā)時間和成本的好方法。但是,它為您的解決方案帶來了一系列限制。例如,API 限制可能會限制可訪問的數(shù)據(jù)量和類型,這可能會阻礙異常檢測解決方案的準(zhǔn)確性和有效性。API 還可能具有限制請求頻率和數(shù)量的速率限制。此外,API 方面的任何更新都可能破壞集成功能或引入安全風(fēng)險。
完全預(yù)測和克服與 API 相關(guān)的挑戰(zhàn)是不可能的,但您可以在集成第三方產(chǎn)品之前通過徹底研究第三方產(chǎn)品來為這些挑戰(zhàn)做好準(zhǔn)備。
云硬件的價格。人工智能算法可能需要大量計算能力來處理信息。在云服務(wù)上托管異常檢測解決方案可以讓您避免人工智能發(fā)展熱潮導(dǎo)致的硬件瓶頸、擴(kuò)展問題和可能的硬件短缺。然而,如果不調(diào)整算法,租用云資源的成本可能會快速上升。
為了控制云成本,請明確定義您要監(jiān)控哪些社交媒體內(nèi)容以及您希望軟件處理多少信息。確保人工智能僅執(zhí)行需要智能算法的任務(wù),所有其他任務(wù)均由資源消耗較少的非人工智能工具完成。
監(jiān)管合規(guī)性。監(jiān)控社交媒體的異常檢測解決方案需要存儲有關(guān)檢測到的異常和分析結(jié)果的信息。根據(jù)法律要求保護(hù)這些信息可以讓您既確保數(shù)據(jù)安全又避免違規(guī)問題。
這里的挑戰(zhàn)是缺乏使用人工智能進(jìn)行異常檢測的法規(guī)。雖然沒有專門針對此類解決方案的實踐,但您可以依賴 GDPR 等國際法規(guī)以及當(dāng)?shù)氐臄?shù)據(jù)保護(hù)法律和標(biāo)準(zhǔn)。
內(nèi)置偏置。人工智能解決方案不可能完全沒有偏見和公平,因為它繼承了創(chuàng)建它的開發(fā)團(tuán)隊的偏見。該團(tuán)隊根據(jù)他們的經(jīng)驗、心態(tài)以及社會和專業(yè)背景選擇算法、開發(fā)工具和數(shù)據(jù)進(jìn)行培訓(xùn)。人工智能偏見給異常檢測帶來了道德和質(zhì)量挑戰(zhàn)。
雖然不可能完全消除偏見,但您可以通過以下方式降低將偏見引入 AI 模型的風(fēng)險:
提高開發(fā)過程的透明度
收集多樣化的訓(xùn)練數(shù)據(jù)集
廣泛測試您的解決方案
聚集多元化的項目團(tuán)隊
需要利基專業(yè)知識。提供復(fù)雜的人工智能解決方案需要您聚集具有不同專業(yè)知識的專家:人工智能和機(jī)器學(xué)習(xí)開發(fā)、SaaS 開發(fā)、云基礎(chǔ)設(shè)施管理、網(wǎng)絡(luò)安全、目標(biāo)行業(yè)的專業(yè)經(jīng)驗。組建如此多元化的團(tuán)隊對任何公司來說都是一個挑戰(zhàn)。保留專家團(tuán)隊也會導(dǎo)致預(yù)算增加。
結(jié)論
監(jiān)控社交媒體并檢測異常帖子可以幫助您完成各種任務(wù):防止安全威脅、打擊恐怖主義、發(fā)現(xiàn)新趨勢和主題等等。使用人工智能進(jìn)行異常檢測可以幫助專家節(jié)省手動工作時間并進(jìn)行更高質(zhì)量的異常分析。與手動異常檢測相比,在云中部署此類解決方案可以降低維護(hù)成本并提高準(zhǔn)確性。